
 
Global Journal of Basic Science       ISSN: 3049-3315 

  

 
Global Journal of Basic Science                                    vol 1, issue 6, April, 2025                                   ISSN: 3049-3315  

Research Article 

Altered gene expression pattern due to different tumor per-
centage affects functions 
Manal A Tashkandi 1,#,*, Mohammed Y Refai 1,#, Lina A Baz 2,#, Hanadi M Baeissa 1, Aminah A Barqawi 3, and 
Pawan Kumar Sharma 4 

1 College of Science, Department of Biochemistry, University of Jeddah, Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia. 
2 College of Science, Department of Chemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. 
3 College of Science, Department of Chemistry, Umm Al Qura University, Makkah Al-Mukarramah, 21955, Saudi Arabia. 
4 Department of Computer Science, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025, India 
# Shared first authors 
* Correspondence: matashkandi@uj.edu.sa (M.A.T.) 

 Abstract: High-throughput data are produced on a big scale and at several levels in order to com-
prehend complex diseases including cancer, diabetes, and kidney disorders. A significant obstacle 
still exists, nonetheless, in extracting useful information from huge datasets for a thorough compre-
hension of cell phenotypes and disease pathogenesis. Big data is created to address biological 
concerns as a result of technological advancements, and it is always easy for biologists and com-
puter scientists to collaborate to streamline the massive datasets and extract the information that is 
relevant and physiologically important. In order to achieve this, we have classified using expression 
datasets and inferred the corresponding functional annotation using a computational technique. In 
order to analyze changes in gene expression and functional annotation, we employed a dataset of 
prostate cancer patients with normal and variable tumor percentages. We have chosen a gene ex-
pression omnibus (GEO) dataset that includes human samples with a range of tumor percentages 
(0--85%). We arranged the samples according to tumor proportion in ascending order and compared 
them to the control group (samples with no tumor) to look for changes in gene expression and 
developed functions as the tumor percentage increased. When the tumor percentage is less than 
50%, we see some fluctuation in the number of differentially expressed genes (DEGs), but after 
that, it increases exponentially. In terms of the pathways, there is a lot of variation in the number of 
enriched pathways, with tumor < 50% not increasing, while several cancer-associated pathways 
seem to be enriched for nearly all the different tumor percentages. Our analysis leads us to the 
conclusion that whereas a number of cancer-associated pathways are consistently enriched for all 
tumor percentages, the number of differentially expressed genes (DEGs) grows as the tumor per-
centage rises while the enriched pathways do not. Insulin resistance, acute myeloid leukemia, basal 
TFs, HIF1-a, neurotrophin, base excision repair, ErbB, VEGF, and mTOR signaling pathways are 
among the top-ranked enriched pathways. RPP30, SRP14, CCNE1, PRKAR1A, ABCF2, PCMT1, 
TUBA1C, STOML2, PPP2R4, and TPI1 are possible pathway components.  

Keywords: Prostate cancer; tumor percentage; gene expression profiling; network analysis; func-
tional impact 
 

1. Introduction 
The post-genomics era's development in recent decades has produced enormous amounts of "big data" in the biological 
sciences, which opens up a wide range of interdisciplinary applications. Large datasets have also made it more difficult 
to handle, analyze, mine, store, and decipher relevant information. Numerous biological databases contain a variety of 
dataset kinds. In the biological sciences, databases like TCGA, Oncomine, Nephroseq, and GEO (gene expression 
omnibus) are commonly utilized. Numerous datasets pertaining to diabetes, cancer, and other biological issues are 
stored in these databases[1-10]. 
Prostate cancer is the fifth most prevalent cause of death for men globally and the second most common type of cancer 
to be diagnosed. Prostate cancer is frequently treated with androgen deprivation therapy, however resistance frequently 
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reduces the benefits of this treatment for survival. Although immunotherapy has shown enormous promise in the 
treatment of solid tumors, patients with prostate cancer have not shown clinically significant improvements, underlining 
unique limitations of this therapeutic method. Therefore, it's critical to investigate new ways to improve prostate cancer 
immunotherapy's effectiveness in concert. 
Beneath the bladder and encircling the urethra lies the male reproductive auxiliary organ known as the prostate gland. 
Contributing vital secretions to semen, which produce ejaculate and preserve sperm viability, is the primary role of the 
prostate. Usually in the mid-to-late stage of life, the cells in the prostate gland can develop into tumors. The mature 
human prostate has fibromuscular and periurethral areas in addition to central, transitional, and peripheral zones. The 
peripheral zone contributes most to normal prostate function in young adult men and comprises more than 70% of the 
prostate glandular tissue. Nearly 80% of prostate tumors originate in this region, making it the most frequent site of 
origin for neoplasms in the aging prostate. The typical gland is made up of stroma-embedded ducts and acini. The 
basement membrane is created by a layer of basal epithelium around a single layer of simple, columnar epithelium seen 
in the ducts and acini. The stromal cells that support spontaneous contractility and avoid fluid stagnation are mostly 
smooth muscle myocytes, to which this layer of extracellular matrix is attached. Fibroblasts are also found in the stroma, 
and they primarily support the ducts in the adult prostate. However, it is thought that fibroblast paracrine signaling plays 
a crucial role in the patterning of the duct during prostate development. According to laboratory data, these stromal 
fibroblasts have the ability to proliferate in the tumor microenvironment, also known as the tumor stroma, by triggering 
survival signaling and causing epithelial transformation. They are also thought to play a role in the long-term growth of 
cancer cells after treatment. Importantly, the androgen receptor (AR), which is thought to be the cause of hormone 
reliance in prostate cancer, is encoded by AR, which is highly expressed by these epithelial cells in both healthy and 
malignant organs. Furthermore, these cells release a serine protease called prostate-specific antigen (PSA), which is 
used to identify and diagnose prostate cancer. PSA is transcriptionally activated by the AR and is often higher in 
individuals with prostate cancer. 
Prostate cancer affects millions of men annually. The disease is one of the most prevalent solid cancers in high-income 
areas, and the prognosis varies greatly depending on age, ethnicity, genetic background, and stage of progression. 
Based on the patient's health status and the tumor's histological, anatomical, and molecular characteristics, one can 
predict the course of a particular person's illness. Living with prostate cancer for many men entails following a 
customized treatment plan for a slow-growing, frequently indolent tumor; however, for many others, relapse is 
anticipated after a definitive treatment, which may be swift, forceful, and, in rare instances, insensitive to standard care. 
As of right now, there is no foolproof way to tell aggressive tumors from indolent ones. But over the past century, 
significant advancements have changed the prognosis for patients with prostate cancer. These include the 
groundbreaking finding that the disease is hormone-dependent and the high therapeutic efficacy of using selective 
inhibitors to target this crucial characteristic, which is now known to be the high expression and frequent genetic 
amplification of AR. Specifically, the last ten years have witnessed unheard-of breakthroughs in proteome profiling, 
mRNA sequencing, and whole-genome DNA sequencing, which have offered unique insights into the genetic 
underpinnings thought to underlie various prostate cancer subtypes and subpathologies. Furthermore, significant 
advancements in PSA screening protocols and imaging modalities have resulted in their growing usage in the diagnosis 
of prostate cancer. 
The identification of pathogenetically unique tumor types is the primary source of target-specificity in the treatment of 
complicated diseases, particularly cancer. Enhancements in tumor classification are usually beneficial to therapeutic 
methods. Target-specific therapy can increase efficacy and limit harm by employing improved classification. Numerous 
methods and technologies have been used in the past to retrieve biological datasets from these databases. For cancer 
molecular classification Cancer classification has been split into two difficulties by Golub TR et al.[11]: class prediction 
and class discovery. In this study, we have chosen a prostate cancer dataset that includes samples with different tumor 
percentages in order to comprehend how the pattern of gene expression and subsequent functions change as the tumor 
percentage rises[2, 5, 12-20]. 
Here, we have chosen a gene expression omnibus (GEO) dataset that contains human samples with a range of tumor 
percentages (0--85%). We arranged the samples according to tumor proportion in ascending order and compared them 
to the control group (samples with no tumor) to look for changes in gene expression and developed functions as the 
tumor percentage increased. Our findings suggest that whereas a number of cancer-associated pathways are 
consistently enriched for all tumor percentages, the number of differentially expressed genes (DEGs) grows as the tumor 
percentage rises but the enriched pathways do not. Insulin resistance, acute myeloid leukemia, basal TFs, HIF1-a, 
neurotrophin, base excision repair, ErbB, VEGF, and mTOR signaling pathways are among the top-ranked enriched 
pathways. RPP30, SRP14, CCNE1, PRKAR1A, ABCF2, PCMT1, TUBA1C, STOML2, PPP2R4, and TPI1 are possible 
pathway components. 

2. Methods  



Global Journal of Basic Science                                          April 2025 3 of 9 
 

Global Journal of Basic Science                                vol 1, issue 6, April, 2025                              ISSN: 3049-3315 

We have utilized the GEO gene expression profiling array dataset (GSE17951[11]) for prostate cancer. We have in-
cluded both normal (69) and tumor (68) samples from this expression dataset in our study. Tumor samples range in 
tumor percentage from 0.5 to 85%. Affymetrix Human Genome U133 Plus 2.0 Array results were used to create these 
gene expression profiling datasets. There are 154 samples in this dataset (69 normal or tumor-free, 68 with a tumor 
percentage of up to 85%, and 17 nearby stroma samples); the latter 17 samples have been removed from the analysis. 
We have analyzed the tumor and normal samples for differential gene expression analysis such that we have 32 DEG 
lists for 68 samples (tumor % > 0.0). In summary, raw fille processing, intensity computation, and normalization are the 
fundamental processes that are engaged in the entire investigation. The most popular methods for normalization are 
EB, RMA, and GCRMA. Here, we have normalized raw intensity using EB[21-27]. Following normalization, we go on to 
our objective, which is to comprehend the patterns of gene expression and the functions that may be deduced from 
them[28-43]. 
MATLAB functions, such as mattest, have been utilized for statistical analysis and the prediction of differential gene 
expression. We used the KEGG database for pathway analysis and wrote our own tool for network and pathway analysis 
(Figure 1a). Throughout the project, FunCoup2.0 was utilized to generate the DEGs networks, and Cytoscape[44] was 
utilized to visualize the networks. We have used MATLAB for the majority of our coding and computations. Four sorts 
of functional couplings or linkages, including protein complexes, physical interactions between proteins, metabolic 
processes, and signaling pathways, are predicted by FunCoup[45]. 
 
3. Results 
3.1. Gene expression profiling and the 
associated functions for varying tumor 
percentages: As indicated in the workflow Figure 
1a, we have first chosen the data of interest (raw 
expression dataset) GSE1795 and processed it till 
normalization and log2 values of all the mapped 
genes are obtained. There are 154 samples in this 
dataset (69 normal or tumor-free, 68 with a tumor 
percentage of up to 85%, and 17 nearby stroma 
samples); the latter 17 samples have been removed 
from the analysis. We have analyzed the tumor and 
normal samples for differential gene expression 
analysis such that we have 32 DEG lists for 68 
samples (tumor % > 0.0).  
In this study, we examined the DEGs (Figures 1b 
and c) at varying tumor percentages and found that 
many genes are frequently altered regardless of 
tumor percentage, and that the number of DEGs 
rises as tumor percent rises (Figure 1c), but the 
number of pathways does not follow the same 
pattern (Figured 1). The number of enriched 
pathways varies significantly at lower tumor 
percentages, but it roughly stabilizes in samples 
with tumor percentages greater than 50%. 
3.2. Top ranked enriched pathways and DEGs: 
Following the prediction of DEGs and enriched 
pathways, we examined enriched pathways and 
genes that were nearly changed in every tumor 
sample. The top ranked pathways that are 
commonly changed are insulin resistance, AML, 
basal TFs, HIF-1, neurotrophin, base excision 
repair, and ErbB signaling (Figure 2a). The top 
ranked genes are RPP30, SRP14, CCNE1, 
PRKAR1A, ABCF2, PCMT1, TUBA1C, STOML2, 
PPP2R4, TPI1, TUBB2B, and so on (Figure 2b). It 
is known that the identified genes and pathways 
contribute to cancer either directly or indirectly. The 
bulk of the top-ranked pathways (Figure 2a) belong 
to overall enriched pathways (between normal and 

Figure 1. Evolution of DEGs with the increase in tumor percentage. (a) Workflow. (b) 

Venn diagram to display the DEGs. (c) Evolution of DEGs with the increase in Tumor 

percentage: To analyze the DEGs for different percent of tumor in the biopsy samples, we 

have arranged the tumor samples based in increase order. In each step we add next two 

samples with higher tumor percent and have calculated DEGs. We observe that with the 

increase in tumor percentage number of DEGs are increased which means that the samples 

with higher tumor percent have higher level of gene expression aberrations. (d) Evolved 

enriched pathways with the increase in tumor percentage. 

Figure 2. Major pathways and and their potential components. (a) Top ranked enriched 

pathways for different tumor percentage, (b) top ranked genes, and (c) Enriched pathways 

(between normal and tumor) analyzed for prostate cancer without classifying tumor percentage 

(GSE17951). 
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tumor samples) (Figure 2c), as we have 
incorporated additional data (GSE17951) to 
portray the enriched pathways for greater clarity.  
3.3. Network-level understanding of the 
DEGs: We have created the network of DEGs at 
extremely low tumor percentages (0.0%) and up 
to the maximum (85%) following the analysis of 
the DEGs and the enriched pathways. The DEGs 
at five distinct tumor percentages are covered by 
the first through the fifth of these five networks 
(Figure 3). Nearly every gene that is frequently 
differentially expressed is covered by the DEGs 
list that we have created for the network. Even in 
the network, we find that the majority of the 
genes are frequently involved. These genes are 
known to have very high connectivities, and the 
node degree distribution is power law distributed 
(Figure 3). It is also known that these genes may 
or may not be involved in cancer. Genes that are 
overexpressed at the start when the tumor 
percentage is less than six and have stronger 
connection throughout, regardless of tumor %, 
are shown by the nodes with red color 
boundaries (Figure 3). This leads us to believe 
that these genes may be responsible for the 
development of prostate cancer in humans. A list 
of genes that are overexpressed across the 
tumor proportion is displayed in Figure 4 and for 
which we have examined the clinical importance. 
There are some genes that are overexpressed in 
over 5% of patients; to address this, we have the 
TCGA database through cBioPortal.  
 
4. Dicussion: The development of the post-genomics period in recent decades has produced a large amount of "big 
data" in the biological sciences, which opens up a wide range of interdisciplinary applications. The enormous volume of 
datasets has also made it more difficult to handle, process, mine, store, and extract useful information. Numerous 
studies on various forms of cancer have been conducted, and the raw data from these studies are openly accessible. 
Numerous research at various levels have been conducted. We have chosen a dataset from the early work that includes 
both normal samples and patients with varying tumor percentages. In order to comprehend how the gene expression 
pattern and resulting functions change as the tumor proportion rises, we have chosen this prostate cancer dataset with 
different tumor percentages[17, 23, 46-60]. 
The gene expression omnibus (GEO) GSE17951 dataset includes human subjects with a range of tumor percentages 
(0--85%). We arranged the samples according to tumor proportion in ascending order and compared them to the control 
group (samples with no tumor) to look for changes in gene expression and developed functions as the tumor percentage 
increased. Our research leads us to the conclusion that whereas a number of cancer-associated pathways are 
consistently enriched for all tumor percentages, the number of differentially expressed genes (DEGs) grows as the tumor 
percentage rises while the enriched pathways do not. To display the enriched pathways, we have also included extra 
data. As we can see in Figure 2c, the bulk of the top-ranked pathways (Figure 2a) are part of the overall enriched 
pathways (between normal and tumor samples). 
In contrast, we concentrated on the dataset and primarily identified those genes and pathways that continuously remain 
altered regardless of the tumor percentage. Previous research, even in similar types of cancer, has revealed intriguing 
genes and pathways associated with the specific type of cancer. Remarkably, the most commonly altered pathways are 
insulin resistance, AML, basal TFs, HIF-1, neurotrophin, base excision repair, and ErbB signaling (Figure 2a). The most 
frequently altered genes are RPP30, SRP14, CCNE1, PRKAR1A, ABCF2, PCMT1, TUBA1C, STOML2, PPP2R4, TPI1, 
TUBB2B, and so on (Figure 2b). It provides accurate information about the genes and pathways that may show promise 
in the selective targeting of prostate cancer and aids in its comprehension and use for diagnostic purposes. 
Multidisciplinary research on prostate cancer is quite busy and currently includes computational biology in addition to 
laboratory and clinical science. Among these studies are the exploration of novel preclinical hypotheses, the 

Figure 3. Networks of DEGs. Here, the arrow thickness between the networks refer that the next 

network is for the DEGs at higher tumor percentage. The nodes with red color boundary are those 

genes which are overexpressed in the beginning when tumor percentage is less than 6 and have 

higher connectivity throughout irrespective of tumor percentage. 

Figure 4. Clinical significance of some of the DEGs which display higher connectivities. 

These genes are overexpressed in prostate cancer sample (TCGA database). The percentage 

represents the number of patients with the respective genes overexpression. 
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experimental confirmation of scientific discoveries, and the application of these discoveries in clinical settings. Before 
conducting clinical studies to try to enhance disease management, several steps are crucial. The design and specificity 
of new medicines and treatment plans, such as those that more effectively target important aspects of AR biochemistry, 
have also improved as a result of a greater understanding of the disease's molecular underpinnings. From improved 
biological knowledge of each disease stage that influences clinical care to early illness identification and therapy, 
progress is ongoing in a number of domains[61-68]. 
Millions of men throughout the world suffer from prostate cancer. The illness makes up 7% of newly diagnosed male 
cancers worldwide (15% in industrialized nations), making it the second most frequent cancer in males after lung cancer. 
Prostate cancer is also one of the top causes of cancer-associated death in males, with over 1.2 million new cases 
diagnosed and over 350,000 deaths worldwide each year. The risk of prostate cancer rises significantly with age, and 
more than 85% of newly diagnosed cases occur in people over 60. Therefore, areas with high life expectancy, like the 
USA and the UK, have a notably high prevalence of prostate cancer. Globally, the incidence of prostate cancer is 
positively correlated with both GDP and the human development index (HDI), meaning that developed countries typically 
have greater incidences than undeveloped countries. It's interesting to note that, although the incidence is rising in these 
regions, certain Asian nations with high HDIs, including South Korea and Japan, have relatively lower incidences than 
Western nations with comparable high HDIs[69-90]. 
Since greater screening frequency is linked to increased incidence through overdiagnosis, the rise in incidence may be 
the result of increased awareness of prostate cancer brought about by access to diagnostic screening in many of these 
regions. Furthermore, these areas have the highest age-standardized mortality rates from prostate cancer, while early 
detection access is anticipated to lower these rates. Repeated screening lowers the mortality rate from prostate cancer 
and boosts the diagnosis of all prostate tumors, including indolent ones, according to European studies using long-term 
follow-up data. The causes of the increasing age-adjusted mortality in emerging countries may also be related to the 
fact that economic development is linked to a rise in prostate cancer risk factors that surpasses the advantages of 
advancements in public health and treatment. Although there is insufficient evidence to support an impact on disease 
incidence, non-heritable variables such as obesity, cigarette smoke exposure, and a primarily Western diet are generally 
believed to increase prostate cancer-related mortality. 
5. Conclusions: Our research leads us to the conclusion that whereas a number of cancer-associated pathways are 
consistently enriched for all tumor percentages, the number of differentially expressed genes (DEGs) grows as the tumor 
percentage rises while the enriched pathways do not. This indicates that, regardless of the tumor percentage, only 
specific pathways may be changed in cases of prostate cancer. 
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