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 Abstract: Atherosclerosis is a widespread and chronic progressive arterial disease that has been 
regarded as one of the major causes of death worldwide. It is caused by the deposition of choles-
terol, fats, and other substances in the tunica intima which leads to narrowing of the blood vessels, 
loss of elasticity, and arterial wall thickening, thus causing difficulty in blood flow. For a long time, 
one of the most crucial approaches to the treatment and prevention of cardiovascular illnesses has 
been the use of natural products. Numerous studies on natural chemicals that are beneficial against 
atherosclerosis have been carried out in recent decades due to the growing interest in natural prod-
ucts, including medicinal herbs. The primary cause of coronary heart disease, a chronic inflamma-
tory condition marked by fat buildup in the artery wall, is atherosclerosis. Since inflammation is its 
precursor, seaweed-derived polysaccharides that target inflammatory genes are a viable source of 
anti-inflammatory drugs. After preparing the list of herbal medications and predicting the suspected 
indicators for atherosclerosis, we looked for possible binding targets. The binding model of fucoidan 
and alginate with targeting genes was predicted using computational methods such as molecular 
docking and Swiss-ADME. Molecular docking experiments showed that Fucoidan could block genes 
involved in inflammation. Furthermore, Fucoidan's sulphate group gives it unique properties in the 
GI tract and molecular dynamics. These findings suggest that sulphate polysaccharides may have 
anti-atherogenic properties. We used the publicly available dataset to investigate the top-ranked 
genes based on network-level understanding of gene expression patterns and their effects on func-
tions. The pathways that were most affected were phagosomes, cell adhesion molecules, haema-
topoietic cell lineage, cytokine-cytokine receptor interaction, osteoclast differentiation, antigen pro-
cessing and presentation, and critical immune signalling pathways. Additionally, based on networks 
of DEGs, the genes that were most connected were PTPRC, ITGB2, HCLS1, RAC2, LAPTM5, 
CD37, CD53, CD48, SYK, HCK, TYR0BP, FERMT3, COR01A, LCP1, and phagosome. Here, we 
have investigated the possible connections between the marine medications Fucoidan and Alginate-
N, as well as their possible targets in atherosclerosis. 

Keywords: Natural drugs (NDs)/Herbal drugs (HDs); Fucoidan and Alginate-n; atherosclerosis; 
metabolic disorders; genes and pathways; biological networks 
 

1. Introduction 
One of the main causes of death and morbidity worldwide is atherosclerosis. Peripheral vascular disease, 

myocardial ischaemia, heart failure, heart attacks, and strokes are all caused by it. Inflammation, damage, and 
malfunction of endothelial cells in the heart are hallmarks of atherosclerosis. Acute cardiovascular disease is 
brought on by unstable atherosclerotic plaque rupture, arterial stenosis, or occlusion brought on by platelet 
aggregation and thrombosis. Atherosclerosis is a chronic inflammatory disease[1-6]. Proinflammatory cytokines, 
inflammatory signalling pathways, adhesion molecules, and bioactive lipids all contribute to the inflammation 
associated with atherosclerosis. The impact of inflammation and the systemic inflammatory signalling pathway on 
atherosclerosis, the part related signalling pathways play in inflammation, the development of atherosclerosis 
plaques, and the potential for atherosclerosis treatment through inflammation inhibition are all covered in this 
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review. Plaque accumulation in the wounded area, arterial constriction, cholesterol deposition on the arterial wall, 
and monocyte adhesion to the endothelium are all consequences of endothelial injury. This mechanism causes 
chronic inflammation, which ultimately results in thrombosis or stenosis. The lipid-driven, multifocal, smouldering 
immuno-inflammatory illness known as atherosclerosis affects the medium and large arteries. Leukocytes, intimal 
smooth muscle cells, and endothelial cells are the primary players in the development of this disease. The most 
severe consequences of atherosclerosis, including heart attacks and strokes, are brought on by superimposed 
thrombosis. Therefore, the important topic is not why atherosclerosis starts, but rather why, after years of slow 
progression, atherosclerosis becomes complicated by luminal thrombosis. If thrombosis-prone plaques could be 
identified and prevented, atherosclerosis would be a far less dangerous condition. The vast majority of deadly 
coronary thrombi are caused by plaque rupture. Compared to women, coronary thrombosis is more frequently 
caused by plaque rupture in men[3, 4, 7-18]. 

As blood pressure, smoking, and low-density lipoprotein (LDL) cholesterol levels have dropped, the risk 
factor profile has changed. The preventive properties of high-density lipoprotein have been questioned by recent 
research, which now focusses on triglyceride-rich lipoproteins as well as low-density lipoproteins as the causes of 
atherosclerosis[9-11, 16, 19-21]. Atherosclerosis's non-traditional causes, like sleep disturbances, sedentary 
lifestyles, the microbiota, air pollution, and environmental stress, have also drawn more attention. Leukocytes and 
inflammatory pathways connect both established and new risk factors to the changed behaviour of arterial wall 
cells. Investigating the pathophysiology of atherosclerosis has brought attention to the bone marrow's role: clonal 
haemopoiesis, a previously unknown but frequent and significant age-related contributor to the risk of 
cardiovascular disease, can result from somatic mutations in stem cells. The idea of "vulnerable plaque" has given 
way to more detailed descriptions of the mechanisms behind the thrombotic consequences of atherosclerosis. 
These developments in our knowledge of the biology of atherosclerosis have made it possible to develop 
therapeutic approaches that could enhance the prevention and management of the now common atherosclerotic 
conditions. Ruptured plaques exhibit angiogenesis, adventitial inflammation, and outward remodelling. They 
consist of a big, lipid-rich core, angiogenesis, adventitial inflammation, outward remodelling, and a thin, fibrous 
cap with many macrophages and few smooth muscle cells. Plaque rupture is the most common cause of coronary 
thrombosis. Distinct patho-anatomical features of ruptured plaques, and consequently, rupture-prone plaques, 
may help with in vivo image recognition[8, 10, 12, 13, 16, 18, 19, 22, 23]. 

Atherosclerosis is by far the most prevalent underlying cause of peripheral arterial disease, carotid artery 
disease, and coronary artery disease. Thrombosis, which happens when a ruptured or eroded atherosclerotic 
plaque is superimposed on another ruptured or eroded atherosclerotic plaque, is what causes life-threatening 
clinical events including acute coronary syndromes and stroke. Atherosclerosis by itself is rarely fatal. Therefore, 
the key question is not why atherosclerosis develops, but rather why none or a small number of plaques out of 
many in a particular person seem to experience a thrombosis-prone and fatal phase over their lifetime. 
Atherosclerosis, a chronic inflammatory blood artery disease, is the primary cause of cardiovascular disease, a 
major cause of death globally. Along with cholesterol that enters from the circulation, atherosclerotic lesions also 
contain macrophages, T lymphocytes, and other immune response cells. While interfering with regulatory 
immunity speeds up disease, targeted ablation of genes expressing proinflammatory cytokines and costimulatory 
factors reduces disease in mice models. Atherosclerosis has been linked to both innate and adaptive 
immunological responses, with elements of low-density lipoprotein that carry cholesterol causing inflammation, T 
cell activation, and antibody formation as the illness progresses[3, 5, 8, 12, 13, 16, 17, 19, 21, 24-29]. 

Since the beginning of civilisation, natural goods have been prized for a number of uses, including 
medicinal ones. As they have been used to treat numerous other conditions, medicinal herbs have also been used 
to cure atherosclerosis. The mechanisms of action of several herbs used to prevent atherosclerosis have only 
lately been clarified by the use of cellular models for anti-atherogenic natural product screening or in-depth 
research on certain plants. To better comprehend these plants, recent studies on natural products—particularly 
medicinal herbs—were categorised and described based on their mechanisms of action (MOAs) against 
atherosclerosis. 

2. Methods 
In order to find possible targets and herbal medications that can interfere with the activated signalling 

pathways, we proposed to examine the activated signalling pathways of individual atherosclerosis. In particular, 
we use an integrated method to first discover the genes that are up- or down-regulated in patients with 
atherosclerosis, and then we identify the components of the pathway. Lastly, we mapped the 
upstream/downstream signalling for the medicines alginate and fucoidan. 

The project's objective was to identify genes with altered expression in macrophages from atherosclerosis 
patients compared to macrophages from healthy individuals. To that end, we first selected the data we were 
interested in (raw expression datasets) GSE9874 (total 60 samples, 30 normal and 30 atherosclerosis) 
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9874). They used baseline macrophages, monocyte-
derived macrophages from peripheral blood, and foam cells cultured with or without oxidised LDL. Fifteen 
individuals with subclinical atherosclerosis and a family history of coronary heart disease (CHD) provided the 
macrophages. 15-year-olds' macrophages and sex-matched individuals without atherosclerosis or a family history 
of CHD served as controls. Four lists of differentially expressed genes (DEGs) were obtained by comparing the 
atherosclerosis samples with normal samples of the corresponding samples for the purpose of differential gene 
expression analysis[30-39]. 

In conclusion, processing raw files, calculating intensity, and normalisation are the fundamental 
procedures for the majority of the study. The most popular methods for normalisation are EB, RMA, and GCRMA. 
Here, we have normalised raw intensity using EB. Following normalisation, we move forward with our objective, 
which is to comprehend the patterns of gene expression and their deduced roles. The built-in function GEO2R 
has been utilised for statistical analysis and differential gene expression prediction. In this instance, a matrix of 
gene expression levels is required, where each row corresponds to a gene and each column to a replication. The 
number of rows in both the normal and target data categories must be equal, and each class's variances must be 
equal. We created our own algorithm for pathway and network analysis and conducted pathway research using 
the KEGG database. 

Throughout the work, FunCoup2.0 was utilised to generate the DEGs networks, and Cytoscape was 
utilised to visualise the networks. We have used MATLAB for the majority of our coding and computations. Four 
sorts of functional couplings or linkages, including protein complexes, physical interactions between proteins, 
metabolic processes, and signalling pathways, are predicted by FunCoup. 

Docking approach details: 
ACVR1B, COL1A, CR2, GP5, IFNA21, IGF1, IL5RA, IL20RA, MAP2K6, RAPGEF3, RRM2; and BCL3, 

BMPRB1, CCL4, CCL5, CD14, CIITA, CSF2RA, CXCL5, HLA-DRB4, IL7R, IL15RA protein sequences were 
obtained from the UniProt database (www.uniprot.org). PubChem was used to obtain the 3D structures of marine 
drugs i.e., Alginate-n (Pubchem CID: 91666318) and Fucoidan (Pubchem CID: 129532628) in SDF format. The 
structure of proteins and ligands was visualized using PyMol.  

The Swiss Model website (www.swissmodel.org) was used to model the homology of the proteins listed 
above. The GMQE, QMEANDisCo, and QMEAN Z-score analyses were used to choose the simulated structures. 
A scale of 0 to 1 for overall model quality is provided by GMQE (Global Model Quality Estimate) and QMEANDisCo 
global, where larger numbers denote higher expected quality. With all options set to default, the Swiss PDB Viewer 
was used to minimise the energy of the proteins' three-dimensional structure after hydrogen atoms were 
introduced[38, 40]. 

The total number of active sites, together with information on their amino acid sequence, cavity locations, 
and cavity average volume, were found using a search tool. Therefore, using the Discovery Studio and CASTp 
server with the default probe radius (1.4 Å), the binding pocket of each of the proteins listed above was predicted. 

PyRx was used for the molecular docking experiment (AutoDock Vina). For docking, the atomic 
coordinates of the protein and ligand were converted to pdbqt files. AutoDock Vina and grid box dimensions with 
specified spacing and size pointing in the x, y, and z directions were used to build the binding pocket[38, 39, 41-
47]. The docking trials were conducted using the default parameters. To identify the best binding configurations 
for the compounds, the lowest binding free energy (delta G), the quantity of hydrogen bonds, and other 
hydrophobic interactions were also taken into consideration. Discovery Studio and PyMol examined a wide range 
of interactions, including hydrogen bonds, carbon-hydrogen bonds, van der Waals interactions, pi-sigma, pi-sulfur, 
alkyl, pi-alkyl, pi-pi T-shaped, and halogen connections. 

     3. Results 
3.1. Comparative gene expression profiling: We looked at the total gene expression profile as well as the important 
pathways that are enriched at a very high fold change threshold, not only the atherosclerotic genes. Genes that 
are upregulated, genes that are downregulated, and pathways are shown as nodes that are connected by strings 
(Figure 1a-1c). Here are the patterns of top upregulated genes' interactions with other overexpressed genes and 
functional pathways. Upregulated genes that interact with important pathways include COL1A2, MAP2K6, RRM2, 
IL20RA, RAPGEF3, ITGB1, GP5, ACVR1B, CR2, IL5RA, IFNA21, IGF1, EGF, and others. In the meantime, EGF 
has been discovered to interact directly with FoxO signaling, cytokine-cytokine receptor interaction, ErbB signal-
ing, and HIF-1 signaling pathways, as well as indirectly with complement and coagulation cascades, hematopoietic 
cell lineage, and B-cell receptor signaling pathways through upregulated CR2. Through MAP2K6, IFNA21 is linked 
to neuroactive ligand receptor interaction, toll-like receptor signaling, cytokine-cytokine receptor interaction path-
ways, and TNF signaling (Figure 1a—1c). 
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3.2. Functional 
profiling: We 
evaluated the impact 
of gene expression 
changes at the 
functional level using 
pathway enrichment 
analysis after creating 
the list of differentially 
expressed genes. We 
acquire a list of routes 
with their p-values 
from pathway 
enrichment analysis, 
which we utilize to 
determine statistical 
significance. 
Following the 
compilation of a list of 
differentially 
expressed genes, we 
used pathway 
enrichment analysis to 
assess the functional 
significance of gene 
expression variations. 
Pathway enrichment 
analysis provided us 
with a list of pathways 
and their p-values, 
which we used to 
establish statistical 
significance. The top 
13 and 25 DEGs down 
and upregulated 
genes that were 
significantly modified 
in atherosclerosis 
were found using the 
Enriched KEGG 
pathways, as shown in 
Figure 1d—1e. The cytokine-cytokine receptor interaction signaling, PI3K—Akt signaling pathway.  

3.3. Critical infectious and inflammatory pathways are dominantly affected as a result of atherosclerosis progres-
sion: To analyze the detailed role of the altered genes in terms of expression at functional level, we have performed 
the individual pathway level analysis followed by their pathway components. Here, we observed the significantly 
altered pathways and majority of the genes belong to cytokine, TLR, NF--kB, ubiquitin proteasomal system, and 
some more pathways also as potential components of immune system (Figure 1). Furthermore, we have also 
performed gene ontology (GO) terms enrichment analysis and protein classification by using panther database as 
shown in Figure 2. In molecular functions, binding and catalytic activity appear dominantly enriched followed by 
molecular transducer activity, molecular function regulator, transcription regulator activity, and transporter activity. 
In cellular components terms, cellular anatomical entity and protein-containing complex terms were enriched. The 
potential biological processes terms which were enriched potentially are: cellular process, biological regulation, 
metabolic process, response to stimulus, signaling, localization, multicellular organismal process, localization, and 
immune system process. In panther protein classification, metabolic interconversion enzyme, protein modifying 
enzyme, gene-specific transcriptional regulator, defense/immunity protein, protein modifying enzyme, transporter, 
transmembrane signal receptor, scaffold/adaptor protein, and protein-binding activity modulator (Figure 2).  

Figure 1. Atherosclerosis gene expression profiling, functional analysis, and network level 
understanding. (a) DEGs and the inferred pathways network. (b) Up-regulated genes and (c) 
down-regulated genes and inferred pathways network. (d) Pathways enriched for up-regulated 
genes and (e) the pathways enriched for down-regulated genes. 
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3.4. Docking profiling reveals potential putative 
targets against atherosclerosis: Finally, we 
looked at herbal medicines as prospective 
treatments for such globally prevalent human 
disorders. This research not only provides pro-
spective herbal medications, but also possible 
indicators. 
3.4.1. Modelled structure of proteins: Supple-
mentary Table 1 lists the modelled structures 
of BCL3, BMPRB1, CCL4, CCL5, CD14, 
CIITA, CSF2RA, CXCL5, HLA-DRB4, IL7R, 
IL15RA: and ACVR1B, COL1A, CR2, GP5, 
IFNA21, IGF1, IL5RA, IL20RA, MAP2K6, 
RAPGEF3, RRM2 based on GMQE and QME 
The fraction of residues present in most favor-
able areas, extra allowed regions, generously 
allowed regions, and banned regions are de-
picted by the Ramachandran plot (Suppl. Fig-
ure 1 & Supplementary Table 1). These results 
revealed that the modelled structures were of 
sufficient quality to be used in subsequent mo-
lecular docking research. 
3.4.2. Binding patterns of proteins with marine 
drugs: Molecular docking findings revealed 
that the marine medicines Alginate-n and Fu-
coidan bind to the proteins' expected binding 
site (Figures 3 and 4). Table 1 shows the min-
imal binding energies of proteins with marine 
pharmaceuticals in kcal/mol. The majority of 
proteins have a strong affinity for Fucoidan 
(Figure 3). The maximum binding affinity was 
found in BMPRB1, CSF2RA, MAP2K6, CIITA, 
and ACVR1B, with binding energies of -
6.5kcal/mol, -6.3kcal/mol, -6.2kcal/mol, and -
6.0kcal/mol, respectively. Except for CIITA, which displayed a binding affinity for Alginate-n, they all showed affinity 
for Fucoidan. We looked into the generated complexes with Discovery studio and PyMol to discover what was 
causing the differences in binding energies (Figure.). In terms of traditional hydrogen bonds, CSF2RA, MAP2K6, 
CIITA, and ACVR1B bound to Alginate-n and Fucoidan in the following order: 4, 5, 7, 8, and 2. (Table 1 and Figure 
3 and 4). BMPRB1 formed substantial hydrogen connections with Tyr248, Asp350, and Lys336 with bond lengths 
ranging from 2.16--3.07nm. With Arg43, Thr44, Met45, and Arg155, CSF2RA demonstrated typical hydrogen 
bonds with bond lengths ranging from 2.11--2.69Å. Gly65, Lys82, Lys181, Ser201, and Lys210 formed conven-
tional hydrogen bonds with Gly65, Lys82, Lys181, Ser201, and Lys210, with bond lengths ranging from 2.03Å--
2.89Å (Figure 3 and 4). With Glu565, Ser567, Arg839, Thr866, and Trp896, CⅡTA formed conventional hydrogen 
bonds with lengths ranging from 2.14 Å to 2.77 Å. ACVR1B established conventional hydrogen bonds with Lys234 

Figure 2. Functional analysis and protein classification by using 
Panther database. Molecular functions, cellular components, biological 
processes, and panther protein classes. 
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and Ser282 with bond lengths 2.18Å to 2.37Å, respectively (Figure 3 and 4). Furthermore, the respective Rama-
chandran plots have been presented in supplementary Figure 1.  

Table 1: List of top enzyme-ligand complex showing remarkable binding energies (Up and down regulated genes’ 
respective proteins).  

Figure 3. Docking profiling of up-regulated genes (inferred proteins). It represents the respective protein structures 
with the binding sites as enlarged view. 
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S. No. 

 
Enzyme-ligand complex 

 
Binding energy (Kcal/mol) 

 
Number of HBs 

 
1. 

 
ACVR1B_Fucoidan 

 
-6.0 

 
2 

 
2. 

 
COL1A_Fucoidan 

 
-5.4 

 
3 

 
3. 

 
CR2_Fucoidan 

 
-4.7 

 
3 

 
4. 

 
GP5_Fucoidan 

 
-5.1 

 
4 

 
5. 

 
IFNA21_Fucoidan 

 
-5.9 

 
3 

 
6. 

 
IGF1_Fucoidan 

 
-4.9 

 
6 

 
7. 

 
IL5RA_Fucoidan 

 
-5.6 

 
6 

 
8. 

 
IL20RA_Fucoidan 

 
-5.1 

 
4 

 
9. 

 
MAP2K6_Fucoidan 

 
-6.3 

 
7 

 
10. 

 
RAPGEF3_Fucoidan 

 
-5.8 

 
6 

 
11. 

 
RRM2_Fucoidan 

 
-5.9 

 
3 

  Down regulated genes  

 
1. 

 
BCL3_Fucoidan 

 
-5.1 

 
5 

 
2. 

 
BMPRB1_Fucoidan 

 
-6.5 

 
4 

 
3. 

 
CCL4_Fucoidan 

 
-5.1 

 
3 

 
4. 

 
CCL5_Fucoidan 

 
-4.3 

 
5 

 
5. 

 
CD14_Alginate-n 

 
-5.0 

 
4 

 
6. 

 
CⅡTA_Alginate-n 

 
-6.2 

 
7 

 
7. 

 
CSF2RA_Fucoidan 

 
-6.5 

 
4 

 
8. 

 
CXCL5_Fucoidan 

 
-4.3 

 
3 



Jour. Bas. Sci. 2024, 06, 8 of 12 
 

 

   

 
4. Discussion 
In order to identify potential targets and herbal remedies that can interfere with the signalling pathways, we 
proposed in this study to examine signalling pathways, especially inflammatory pathways, and their constituents 
in individual atherosclerosis patients and subgroups. In particular, we identify the genes that are up- or down-
regulated in each patient with atherosclerosis using a machine learning technique, and then we search for likely 
activated transcription factors. After dividing atherosclerosis patients and controls into groups, we were able to 
identify the upstream/downstream signalling pathways of inflammatory signalling pathways. Lastly, we determined 
the medicines' upstream and downstream signalling targets for alginate-N and fucoidan. 

Multifocal, smouldering, immunoinflammatory atherosclerosis affects both big and medium-sized arteries and is 
driven by lipids. Leukocytes, intimal smooth muscle cells, and endothelial cells are the main contributors to the 
development of this illness. Superimposed thrombosis is responsible for the most severe effects of atherosclerosis, 
including heart attacks and strokes. Therefore, the key question is not why atherosclerosis occurs but rather why 
it abruptly becomes complex with luminal thrombosis after years of indolent progression. Atherosclerosis would 
be a far less dangerous condition if thrombosis-prone plaques could be identified and prevented. Plaque rupture 
is the cause of about 76% of all fatal coronary thrombi. Approximately 80% of coronary thrombosis in men is 
caused by plaque rupture, compared to 60% in women. Large lipid-rich core, thin fibrous cap with many 
macrophages and few smooth muscle cells, angiogenesis, adventitial inflammation, and outward remodelling are 
the hallmarks of ruptured plaques. The most frequent cause of coronary thrombosis is plaque rupture. The 
pathoanatomical characteristics of ruptured plaques and, thus, rupture-prone plaques may be helpful for imaging-
based in vivo detection[1, 3, 4, 7, 13, 14].  
The primary cause of cardiovascular disease, a major global cause of death, is atherosclerosis, a chronic 
inflammatory condition of the blood vessels. Macrophages, T lymphocytes, and other immune response cells are 
present in atherosclerotic lesions together with blood-borne cholesterol. In mouse models, disease is accelerated 
by interfering with regulatory immunity, while it is reduced by targeted deletion of genes encoding costimulatory 
factors and proinflammatory cytokines. Both innate and adaptive immunological responses have been linked to 
atherosclerosis; along the course of the illness, components of low-density lipoprotein that carry cholesterol cause 
inflammation, T cell activation, and antibody formation. Normal arterial defence relies on endothelial cells mounting 
innate immune responses and, following an inflammatory challenge, on macrophages and other immune response 
cells attracted to the artery wall. The development of atherosclerosis is also significantly influenced by these innate 
immune responses. Both internalising and signalling pattern-recognition receptors are involved[7, 9, 11, 48-52]. 
Numerous processes, including LDL oxidation, endothelial cell dysfunction, lipoprotein level variation, molecule 
adhesion, SMC migration, plaque formation, and others, are part of the intricate pathophysiology of atherosclerosis. 
The therapeutic medications used to treat atherosclerosis function in one or more ways. Plants have a wide range 
of chemical components, and these components work in different ways. Although phytochemicals and herbal 
remedies are a fantastic way to combat the risk of atherosclerosis, their application in the disease's therapy is still 
quite limited. Traditional medicine is currently receiving attention due to the research and development of several 
herbal remedies for the treatment of atherosclerosis. Additionally, we found that medicinal compounds produced 
from herbal sources offer a larger benefit due to less side effects when compared to synthetic drugs in terms of 
risk and benefit ratios. Depending on how they work, using herbal medicines sparingly can provide an alternate 
platform for the treatment of atherosclerosis[5, 21, 53-55]. 
Based on the previous scientific research, this study may have concentrated on phytomedicines that have the 
ability to affect the cardiovascular system, specifically atherosclerosis, in terms of their safety and effectiveness. 
Conversely, the majority of phytomedicines have a range of cardiovascular effects that frequently overlap. This 
classification is not intended to assign herbs to particular illnesses, but rather to make things simpler. The dilution 
of active ingredients in herbal medicines has less harmful and unwanted effects than the concentration of active 

 
9. 

 
HLA-DRB4_Fucoidan 

 
-4.6 

 
5 

 
10. 

 
IL7R_Fucoidan 

 
-4.8 

 
6 

 
11. 

 
IL15RA_Alginate-n 

 
-4.8 

 
4 
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ingredients in allopathic treatments. Cardiovascular disease is a serious health risk, thus it is important to pay 
attention to these side effects and drug interactions. No herbal medicine program should be initiated without 
carefully assessing the possible outcomes. 
5. Conclusions 

The goal of this research is to identify potential targets and herbal remedies that may interfere with the active 
signaling pathways that lead to individual atherosclerosis. In particular, we have identified the genes that are up- 
or down-regulated in particular atherosclerosis patients using a machine learning technique, and then we search 
for likely activated transcription factors. We identified several subgroups of atherosclerosis patients with similar 
transcription factors based on their upstream/downstream signaling pathways. Lastly, we determined which up-
stream and downstream signaling targets the medications alginate-n and fucoidan target. 

Supplementary Materials: The following supporting information can be downloaded at: www.jbsciences.com/xxx/jbs-
2024006-SupplementaryFigure1.pptx (Figure S1); www.jbsciences.com/jbs-2024006-Supplementary_Table.docx (Table S1). 
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